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COMMENT 

Comment on ‘Eden model on the Manhattan lattice’ 

R Botet 
Laboratoire de Physique des Solides, Bitiment 510, UniversitC Paris-Sud, Centre d’Orsay, 
91405 Orsay, France 

Received 17 September 1985 

Abstract. Numerical simulations of the Eden model on the Manhattan lattice show clearly 
that this model leads to compact objects similar to the standard Eden case. This contradicts 
the conclusion of a letter of Chemoutsan and MiloSeviC. 

By applying a position space renormalisation group technique to the Eden model on 
square Manhattan lattice, Chemoutsan and MiloSeviE (1985) concluded that this model 
and the Eden model on the ordinary square lattice were in two different universality 
classes. Moreover, they argue that the former may have a non-trivial fractal dimension. 
Unfortunately, renormalisation equations are very hard to obtain exactly. In practice, 
the authors can calculate the fixed points in only two cases: when the renormalised 
cell is 2 x 2 (linear size: b = 2) and when it is 3 x 3 (b = 3). For example, in the extended 
Eden model one guesses compact clusters in any dimension of space (Richardson 
1973, Peters er a1 1979, Dhar 1985), and the authors find a ‘fractal’ dimension: D = 1.778 
for b = 2 and D = 1.7991 for b = 3, results which show a very poor convergence to the 
expected value D = 2. 

To enlighten the situation, it is interesting (as challenged by the authors) to compare 
these conclusions with numerical results. I did numerical simulations of the Eden 
model on the square Manhattan lattice. The results for cluster size up to 50 000 particles 
are plain. Figure l ( b )  shows a typical cluster grown by this process. Figure 2 shows 
a log-log plot of the radius of gyration against the number N of particles and an 
effective fractal dimension (defined as ( d  log(R,)/d log( N ) ) - ’ )  against 1/ N. We know 
(Peters et a1 1979) that this simple method gives good results, when we are only 
interested in the fractal dimension of the whole cluster (it is not the case for such 
quantities like the thickness of the surface; for example, see Jullien and Botet (1985a)). 

It appears clearly that clusters grown on the Manhattan lattice are compact and 
look very much like the clusters grown on an ordinary square lattice (figure l ( a ) ) .  

Nevertheless, we can note that, when comparing the values found for the ‘fractal’ 
dimensions by the renormalisation technique, one finds: DE s DEM DEE s 2 (the 
values are: 1.729 < 1.7302 < 1.7991 < 2 for b = 3), where index E means the standard 
Eden model (the A model of Jullien and Botet (1985a, b)), EE the extended Eden 
model ( B  version) and EM the extended model on Manhattan lattice. Then though 
all these dimensions are probably equal (to 2), the increasing order in D seems to 
correspond to a decreasing order in the width of the surface. We can qualitatively see 
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Figure 2. Log-log plot of the radius of gyration against the number of particles for the 
Eden process on the Manhattan lattice (average over 250 samples). Insert: effective fractal 
dimension (see text) against 1/N. 

this feature in figure 1 for models EM and EE. It is reminiscent of the non-renormalis- 
able constraint due to the Manhattan lattice (short range effect). This constraint makes 
the surface rougher on the short length scales. 

Moreover, the method used by Chernoutsan and MiloSeviC is not credible because 
the renormalised cells are too small. To give an example: for the extended Eden model, 
they found for the critical value of the fugacity: Kc=0.377 for b = 2  and Kc=0.231 
for b = 3 .  What happens for large values of b? 

For every rescaling factor b, the renormalisation group transformation is 

K ’ =  R ( K )  

where R ( K ) = ~ , ~ - ~ ( ~ ) K ~ * - ~ + .  . .+ab2(b )Kb2 ,  and each coefficient a i s  1 since it is a 
number of configurations. First we note that the existence of a unique unstable fixed 
point in the range OS K S 1 is a trivial result. Then, a lower bound of ab2 is easy to 
obtain, since the number of ways to construct the full b x b cell is larger than the 
number of ways to construct the full ( b  - 1) x ( b  - 1 )  cell times the number of ways to 
fill the border (figure 3) .  

So, we have the inequality 

Ub2(b)> ( 2 b - 2 ) ! ’ a ( b - , ) 2 ( b - l ) .  

Since IIIiA (2c)!’ is of order b2b2 when b tends to CO, the inequality 

K c >  ab2( b)K,b’ 

implies 

K,% b-2 

for b tending to CO (for any d, one has: Kc=s b - d ( d - l )  1. 
This result shows that the limiting value of K ,  is 0 and there is no more unstable 

fixed point when b is infinite. The system does not present any criticality. 
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Figure 3. For filling the b x b cell, one can fill the ( b  - 1) x (b  - 1) cell (shaded area) then 
one fills the heavy links (2b-2)! number of ways; finally one fills the light links (2b-2)!  
number of ways. 

In conclusion: numerical simulations suggest that the Eden model on the ordinary 
square lattice and the Eden model on the square Manhattan lattice are very similar 
and probably in the same universality class, in contradiction with the conclusions of 
Chernoutsan and MiloSeviC based on renormalisation of small blocks. The two models 
lead to compact objects and the short range constraint due to the Manhattan lattice 
is not renormalisable. 

I thank J W Lyklema for a discussion on this subject at the MECO Seminar of Aussois 
(1985) and R Jullien for material help. This work has been supported in part by an 
ATP CNRS. 

Note added. Chernoutsan and MiloSeviC give the example of the Sawada model as a modified Eden model 
with short range constraint, which yields clusters with non-trivial fractal dimension. This result has been 
quashed by Meakin (1983). 
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